

OpenShift Service Mesh at
scale

Steve Mulholland
Senior Solution
Architect, Red Hat

Andrew Sewell
Cloud Engineer,
Kyndryl

James Force
Principal Consultant,
Red Hat

What we’ll talk about

Setting the context.

Security, Operations, Optimisation.

Looking into the future…

Target audience

● Getting started with Service Mesh in
small use cases.

● Service Mesh PoC running

● Multi-tenant clusters with no service
mesh deployment.

 Who is this for?

4

Service Mesh: Who uses it and why?

● Platform engineers who aim to make developers happier

and more productive by providing:

○ Automatic & enforced mTLS encryption

○ Tools to implement “zero trust” security policies

○ Broad visibility with logs, metrics and traces

○ Network and service failure mitigation

○ Traffic management for migrations and A/B testing

● Allows developers to focus on business logic, and not the

complexities of microservices.

● There are many ways to achieve these, but a service mesh

“checks all of the boxes” with one common layer.

Service

Container Platform

Service Mesh

Services
Without Service Mesh

Services
With Service Mesh

Service

...and more boilerplate code.

Traffic Management Code

Failure Handling Code

Metrics & Tracing Code

Security Code

Container Platform

Service Mesh: Who uses it and why?

5

OpenShift Service Mesh
OSSM and Istio differences

OpenShift Service Mesh vs Istio

OpenShift Service Mesh

● Operator based install with custom resources to
help manage the deployment:
○ Service Mesh Control Plane (SMCP)
○ Service Mesh Member Role (SMMR)

● OpenSSL
● Allows multiple meshes per cluster

Community istio

● Helm / istioctl based install
● BoringSSL

6

Cluster deployment models

● Clusters

● Single Cluster

● Multiple Federated Custers

● Multiple non federated clusters

Multiple meshes in a cluster Meshes federated across clustersA multi-tenant mesh per cluster

NS NS

NS NS
NS NS NS NS

● Meshes

● Single mesh

● Multiple meshes

Clusters/Mesh Models

7

https://istio.io/

Operating at scale

Scale can equally mean large number of small meshes or
small number of meshes & clusters with many tenants.

For our purposes scale is:

Openshift Cluster + Single Mesh - Multi-tenant via
namespace-based tenant isolation

● 100+ namespaces per cluster
● 1000+ istio proxies per cluster
● Mixture of tenant size / importance / istio understanding

Operating at scale
What is scale?

8

● Isolation

● Hardening

● MTLS

TopologiesSecurity

● Gateways

● Mesh model

Operations

● Patching & upgrades

● Monitoring

● Optimisation

Patching and upgrades

10

Establish a regular patching regime for Service Mesh

● Patch version - monthly & minor version - quarterly
● Consider tie in with wider Cluster Patching
● Operators - set update approval = manual

Prepare for breaking changes in upgrades (Istio is maturing!)

● Review Service Mesh AND Istio release notes
● Regression testing
● Expect to Triage

○ Forward Fix
○ Application teams have different levels of service mesh

expertise

Restarts required! Operators restart the control plane pods not
application pods - At scale this requires a degree of coordination
for independently restarting app proxies

Operations – Patching and upgrades

Monitoring and Observability

11

Service Mesh v2 ships with dedicated Observability tooling

● Prometheus / Kiali / Grafana / Jaeger
● The nature of the tooling changes with Minor / Major releases

○ v3 – istio control plane decoupled from observability tooling

Prometheus

● Scrapes Envoy + Istiod
○ At scale = ‘lots of (too much!) data’

● Mesh Prometheus OOTB is not suited to operating at scale
○ Retention period default is 6 hours
○ No alert manager integration
○ No smcp option to store the Prometheus database on a persistent

volume

Operations – Monitoring

Monitoring and Observability

Approach depends on the organisation’s monitoring /
alerting model, however at scale it’s worth the effort to
‘secure’ the Prometheus metrics for longer than 6 hours.

Service Mesh 2.4.x - disable service mesh Prometheus /
Grafana and instead scrape via user-workload monitoring.

● Kiali can use this source

Prior to 2.4.x

● create a Service Monitor resource to scrape istiod
(envoy) metrics into user-workload monitoring

● Alert manager integration
● kiali still using mesh prometheus

12

Operations – Monitoring

By default you can change istio resources in the Kiali UI
– this can be disabled via the smcp
kiali.dashboard.viewOnlyMode: true

At scale it needs additional memory to handle the
quantity of metrics.

Visualisation - KialiMonitoring - Prometheus

Configure a persistent volume for trace data and set

sampling - spec.tracing.sampling default is

100%!

Tracing - Jaeger

Enable globally via spec.proxy.accesslogging,

however, it can’t be removed selectively. Locally is

possible (envoy filter or Telemetry API)

Access Logging

Optimisations
At scale control plane convergence latency can an issue

● The time it takes for a change in the kube api to be pushed to all
proxies

Monitor / alert on pilot_proxy_convergence_time

● Check Pilot_push_triggers to see the source of changes
● Scale out (istiod) or up (cpu / mem limits)

Optimise the size of the istio (envoy) config being pushed

● Create a global sidecar resource to limit cluster config to that
which is pertinent to the namespace

Tailor CPU/memory requests & limits

13

Operations – Optimise

Security

Security

14

 https://istio.io/latest/docs/ops/best-practices/security/

Istio community has a set of security best practices documented

https://istio.io/latest/docs/ops/best-practices/security/

Security
A few things worth shouting out specifically

Security

15

spec.security.identity.type: ThirdParty

Third Party Access tokens

Spec.proxy.networking.trafficControl.outbound.policy:

REGISTRY_ONLY

Deny all Authorization Policies

spec.security.controlPlane.mtls: true

spec.security.dataPlane.mtls: true

spec.security.dataPlane.automtls: true

Destination rules: VERIFY_CERTIFICATE_AT_CLIENT

Enforce Listener TLS ciphers / TLS versions supported

Enforce mTLS

Built in network policies are ingress only

Deny all Network Policies

Topologies

● Shared Gateways (in control plane namespace) aren’t

suited to multi-tenant in a single mesh

● Implement gateways in project namespaces

● SMCP has additionalIngressGateway /

additionalEgressGateway stanzas

○ Pros – gateway deployments controlled centrally.

Gateways patched centrally with control plane

○ Cons – onboarding new projects requires smcp

change

● Gateway injection

Topologies
Ingress/Egress Gateways

16

Gateway deployment considerations

Topologies

Topologies

17

https://istio.io/latest/docs/setup/additional-setup/gateway/#deploying-a-gateway
https://istio.io/latest/docs/ops/best-practices/security/#isolate-sensitive-services

istio.io - deploying a gateway

“As a security best practice, it is

recommended to deploy the

gateway in a different

namespace from the control

plane."

"It may be desired to enforce

stricter physical isolation for

sensitive services. This can offer

a stronger defense-in-depth and

help meet certain regulatory

compliance guidelines."

Using auto-injection for gateway

deployments is recommended as it

gives developers full control over

the gateway deployment, while also

simplifying operations. This makes

the experience of operating a

gateway deployment the same as

operating sidecars.”

istio.io - isolate sensitive services Istio.io - deploying a gateway

https://istio.io/latest/docs/setup/additional-setup/gateway/#deploying-a-gateway
https://istio.io/latest/docs/ops/best-practices/security/#isolate-sensitive-services
https://istio.io/latest/docs/setup/additional-setup/gateway/#deploying-a-gateway
https://istio.io/latest/docs/ops/best-practices/security/#isolate-sensitive-services
https://istio.io/latest/docs/setup/additional-setup/gateway/#deploying-a-gateway

● Patch regularly
○ Be prepared to triage

● Monitor via Prometheus + Alert via Alert Manager
○ refine / redeploy alerts

● Apply security best practice
○ Be prepared to triage(again!)
○ Polish your TLS handshake troubleshooting skills

■ Tcpdump + envoy debug logging

● Establish clear Ingress / Egress patterns

● Handful of big multi-tenant single mesh clusters versus many single
tenant / single mesh clusters

Findings

Operating service mesh at scale you can easily end up herding cats

In conclusion

18

Forward looking
into the future

Into the future

● More of a direct productization of Istio
○ Converge OpenShift Service Mesh with community Istio

○ Support the latest Istio features on OpenShift

○ Increase Red Hat’s collaboration with the Istio community

○ Increase cross-platform integrations over customizing Istio

● Based on Istio rather than the forked Maistra project:
○ Maistra CRDs such as the SMCP and SMMR will not be part of Service Mesh 3.

○

● Continue to use an OpenSSL based Envoy proxy
○ A “bridge-layer” is being contributed upstream to ease maintenance

Service Mesh 3

Forward looking into the future

https://cloud.redhat.com/blog/introducing-a-new-operator-for-istio-on-openshift

20

https://cloud.redhat.com/blog/introducing-a-new-operator-for-istio-on-openshift

Into the future

● Accelerate support for upstream features e.g.
○ Istioctl

○ Revisions & Canary upgrades of the control plane

○ Multi-cluster topologies such as multi-primary, external control planes

○ Ambient Mesh “sidecar-less” data plane

○

● Maistra features will be upstreamed, deprecated or moved to separate projects:
○ Multi-tenancy is being implemented in upstream Istio as “Multi-control plane”

○ Istio OpenShift Routing (“IOR”) has been deprecated and will be removed.

Service Mesh 3

Forward looking into the future

https://cloud.redhat.com/blog/introducing-a-new-operator-for-istio-on-openshift

21

https://cloud.redhat.com/blog/introducing-a-new-operator-for-istio-on-openshift

Into the future

The Service Mesh 3 operator will just manage Istio - Integrations will be managed by separate operators:

Service Mesh 3

Forward looking into the future

OpenShift Service Mesh 2 OpenShift Service Mesh 3

+
+ more

22

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Thank you

